353 research outputs found

    Exploring Evolutionary Economic Geographies

    Get PDF
    Evolutionary approaches in economics have gathered increasing support over the last 25 years. Despite an impressive body of literature, economists are still far from formulating a coherent research paradigm. The multitude of approaches in evolutionary economics poses problems for the development of an evolutionary economic geography. For the most part, evolutionary economic geography imports selective concepts from evolutionary biology and economics and applies those concepts to specific problems within economic geography. We discuss a number of problems with this approach and suggest that a more powerful and appealing alternative requires the development of theoretically consistent models of evolutionary processes. This paper outlines the contours of an evolutionary model of economic dynamics where economic agents are located in different geographical spaces. We seek to show how competition between those agents, based on the core evolutionary principles of variety, selection and retention, may produce distinct economic regions sharing properties that differentiate them from competitors elsewhere. These arguments are extended to illustrate how the emergent properties of economic agents and places co-evolve and lead to different trajectories of economic development over space.evolutionary economics, economic geography, Generalized Darwinism, biological metaphors, self-organization

    Unsteady stagnation-point heat transfer during passage of a concentrated vortex

    Get PDF
    The unsteady boundary layer due to a single rectilinear vortex filament approaching a 2-D stagnation point is investigated. Assuming the vortex remains far from the surface, incompressible potential flow theory is used to determine the time dependent inviscid flow field. The unsteady boundary layer equations are solved by an alternating-direction-implicit finite-difference method. Two mechanisms which cause fluctuations in heat transfer are the unsteady velocity field in the boundary layer and secondly, the unsteady total temperature at the edge of the boundary layer. The relative importance of these mechanisms is dependent upon the total temperature fluctuations relative to the imposed temperature difference. As a vortex approaches a stagnation point it may be forced to one side of the stagnation line or the other, depending on its initial position. Results are presented for both of these cases

    Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage With a 180 Degree Turn

    Get PDF
    Numerical results are presented for flow in a rotating internal passage with a 180 degree turn and ribbed walls. Reynolds numbers ranging from 5200 to 7900, and Rotation numbers of 0.0 and 0.24 were considered. The straight sections of the channel have a square cross section, with square ribs spaced one hydraulic diameter (D) apart on two opposite sides. The ribs have a height of 0.1D and are not staggered from one side to the other. The full three dimensional Reynolds Averaged Navier-Stokes equations are solved combined with the Wilcox k-omega turbulence model. By solving an additional equation for mass transfer, it is possible to isolate the effect of buoyancy in the presence of rotation. That is, heat transfer induced buoyancy effects can be eliminated as in naphthalene sublimation experiments. Heat transfer, mass transfer and flow field results are presented with favorable agreement with available experimental data. It is shown that numerically predicting the reattachment between ribs is essential to achieving an accurate prediction of heat/mass transfer. For the low Reynolds numbers considered, the standard turbulence model did not produce reattachment between ribs. By modifying the wall boundary condition on omega, the turbulent specific dissipation rate, much better agreement with the flow structure and heat/ mass transfer was achieved. It is beyond the scope of the present work to make a general recommendation on the omega wall boundary condition. However, the present results suggest that the omega boundary condition should take into account the proximity to abrupt changes in geometry

    Ice Particle Analysis of the Honeywell AL502 Engine Booster

    Get PDF
    A flow and ice particle trajectory analysis was performed for the booster of the Honeywell ALF502 engine. The analysis focused on two closely related conditions one of which produced an icing event and another which did not during testing of the ALF502 engine in the Propulsion Systems Lab (PSL) at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.63 ice accretion software. The inflow conditions for the two conditions were similar with the main differences being that the condition that produced the icing event was 6.8 K colder than the non-icing event case and the inflow ice water content (IWC) for the non-icing event case was 50% less than for the icing event case. The particle analysis, which considered sublimation, evaporation and phase change, was generated for a 5 micron ice particle with a sticky impact model and for a 24 micron median volume diameter (MVD), 7 bin ice particle distribution with a supercooled large droplet (SLD) splash model used to simulate ice particle breakup. The particle analysis did not consider the effect of the runback and re-impingement of water resulting from the heated spinner and anti-icing system. The results from the analysis showed that the amount of impingement for the components were similar for the same particle size and impact model for the icing and non-icing event conditions. This was attributed to the similar aerodynamic conditions in the booster for the two cases. The particle temperature and melt fraction were higher at the same location and particle size for the non-icing event than for the icing event case due to the higher incoming inflow temperature for the non-event case. The 5 micron ice particle case produced higher impact temperatures and higher melt fractions on the components downstream of the fan than the 24 micron MVD case because the average particle size generated by the particle breakup was larger than 5 microns which yielded less warming and melting. The analysis also showed that the melt fraction and wet bulb temperature icing criterion developed during tests in the Research Altitude Test Facility (RATFac) at the National Research Council (NRC) of Canada were useful in predicting icing events in the ALF502 engine. The development of an ice particle impact model which includes the effects of particle breakup, phase change, and surface state is necessary to further improve the prediction of ice particle transport with phase change through turbomachinery

    Heat Transfer on a Film-Cooled Blade - Effect of Hole Physics

    Get PDF
    A multi-block, three-dimensional Navier-Stokes code has been used to study the within-hole and near-hole physics in relation to heat transfer on a film-cooled blade. The flow domain consists of the coolant flow through the plenum and hole-pipes for the three staggered rows of shower-head holes on the VK1 rotor, and the main flow over the blade. A multi-block grid is generated that is nearly orthogonal to the various surfaces. It may be noted that for the VK1 rotor the shower-head holes are inclined at 30 deg. to the spanwise direction, and are normal to the streamwise direction on the blade. Wilcox's k-omega turbulence model is used. The present study provides a much better comparison for the heat transfer coefficient at the blade mid-span with the experimental data than an earlier analysis wherein coolant velocity and temperature distributions were specified at the hole exits rather than extending the computational domain into the hole-pipe and plenum. Details of the distributions of coolant velocity, temperature, k and omega at the hole exits are also presented

    TopMaker: Technique Developed for Automatic Multiblock Topology Generation Using the Medial Axis

    Get PDF
    The TopMaker technique was developed in an effort to reduce the time required for grid generation in complex numerical studies. Topology generation accounts for much of the man-hours required for structured multiblock grids. With regard to structured multiblock grids, topology refers to how the blocks are arranged and connected. A two-dimensional multiblock topology generation technique has been developed at the NASA Glenn Research Center. Very general configurations can be addressed by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, a multiblock topology can be generated without user intervention. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns, where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in computational fluid dynamics, where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid-generation process

    Glenn-HT Code Validated for Complex Turbine Blade Cooling Passage

    Get PDF
    This work is motivated by the need to accurately predict heat transfer in turbomachinery. For efficient gas turbine operation, flow temperatures in the hot gas path exceed acceptable metal temperatures in many regions of the engine. So that the integrity of the parts can be maintained for an acceptable engine life, the parts must be cooled. Efficient cooling schemes require accurate heat transfer prediction to minimize regions that are overcooled and, even more importantly, to ensure adequate cooling in high-heat-flux regions

    Multifunctional Low-Pressure Turbine for Core Noise Reduction, Improved Efficiency, and Nitrogen Oxide (NOx) Reduction

    Get PDF
    This work studied the feasibility of using Helmholtz resonator cavities embedded in low-pressure-turbine (LPT) airfoils to (1) reduce core noise by damping acoustic modes; (2) use the synthetic jets produced by the liner hole acoustic oscillations to improve engine efficiency by maintaining turbulent attached flow in the LPT at low-Reynolds-number cruise conditions; and (3) reduce engine nitrogen oxide emissions by lining the internal cavities with materials capable of catalytic conversion. Flat plates with embedded Helmholtz resonators, designed to resonate at either 3000 or at 400 Hz, were simulated using computational fluid dynamics. The simulations were conducted for two inlet Mach numbers, 0.25 and 0.5, corresponding to Reynolds numbers of 90 000 and 164 000 based on the effective chordwise distance to the resonator orifice. The results of this study are (1) the region of acoustic treatment may be large enough to have a benefit; (2) the jets may not possess sufficient strength to reduce flow separation (based on prior work by researchers in the flow control area); and (3) the additional catalytic surface area is not exposed to a high velocity, so it probably does not have any benefit

    Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines

    Get PDF
    Calculations were performed to assess the effect of the tip leakage flow on the rate of heat transfer to blade, blade tip and casing. The effect on exit angle and efficiency was also examined. Passage geometries with and without casing recess were considered. The geometry and the flow conditions of the GE-E 3 first stage turbine, which represents a modem gas turbine blade were used for the analysis. Clearance heights of 0%, 1%, 1.5% and 3% of the passage height were considered. For the two largest clearance heights considered, different recess depths were studied. There was an increase in the thermal load on all the heat transfer surfaces considered due to enlargement of the clearance gap. Introduction of recessed casing resulted in a drop in the rate of heat transfer on the pressure side but the picture on the suction side was found to be more complex for the smaller tip clearance height considered. For the larger tip clearance height the effect of casing recess was an orderly reduction in the suction side heat transfer as the casing recess height was increased. There was a marked reduction of heat load and peak values on the blade tip upon introduction of casing recess, however only a small reduction was observed on the casing itself. It was reconfirmed that there is a linear relationship between the efficiency and the tip gap height. It was also observed that the recess casing has a small effect on the efficiency but can have a moderating effect on the flow underturning at smaller tip clearances

    Simulations of Turbine Cooling Flows Using a Multiblock-Multigrid Scheme

    Get PDF
    Results from numerical simulations of air flow and heat transfer in a 'branched duct' geometry are presented. The geometry contains features, including pins and a partition, as are found in coolant passages of turbine blades. The simulations were performed using a multi-block structured grid system and a finite volume discretization of the governing equations (the compressible Navier-Stokes equations). The effects of turbulence on the mean flow and heat transfer were modeled using the Baldwin-Lomax turbulence model. The computed results are compared to experimental data. It was found that the extent of some regions of high heat transfer was somewhat under predicted. It is conjectured that the underlying reason is the local nature of the turbulence model which cannot account for upstream influence on the turbulence field. In general, however, the comparison with the experimental data is favorable
    corecore